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Abstract Geographic information systems and remote

sensing technologies have become an important tool for

visualizing conservation management and developing solu-

tions to problems associated with conservation. When mul-

tiple organizations separately develop spatial data

representations of protected areas, implicit error arises due to

variation between data sets. We used boundary data pro-

duced by three conservation organizations (International

Union for the Conservation of Nature, World Resource

Institute, and Uganda Wildlife Authority), for seven Ugan-

dan parks, to study variation in the size represented and the

location of boundaries. We found variation in the extent of

overlapping total area encompassed by the three data sour-

ces, ranging from miniscule (0.4 %) differences to quite

large ones (9.0 %). To underscore how protected area

boundary discrepancies may have implications to protected

area management, we used a landcover classification,

defining crop, shrub, forest, savanna, and grassland. The total

area in the different landcover classes varied most in smaller

protected areas (those less than 329 km2), with forest and

cropland area estimates varying up to 65 %. The discrep-

ancies introduced by boundary errors could, in this hypo-

thetical case, generate erroneous findings and could have a

significant impact on conservation, such as local-scale

management for encroachment and larger-scale assessments

of deforestation.
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Introduction

Geographic information systems (GIS) have become an

important tool for conservation and natural resource man-

agement (Lewis 1995; Leclerc and Chacón 1998; Bassolé

et al. 2001; FitzHugh 2005; Junge et al. 2010). Though

conservation science and management rely heavily on

spatial analyses (Lacher 1998; Aspinall 2005), spatial data

used in such analyses can contain implicit error that results

in variation between what is seen on the ground and what is
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depicted in the data (Burrough and McDonnell 1998; Do-

miny and Duncan 2001; Bolstad 2002; Rae et al. 2007).

This error has the potential to manifest in, and propagate

through, subsequent analyses and thus into operations and

management plans. Conservation managers depend on the

accuracy of these data layers to manage wildlife (e.g.,

critical habitat, migration patterns, and management zone

delineation), resources (e.g., logging concessions), and

boundary establishment, maintenance, and monitoring

(Gliddon and Aspinall 1997; Smith et al. 1997).

Accurate and consistent delineation of protected area

(hereafter referred to as a park) spaces is also important in

delineating change of land use (i.e., protection to agricul-

ture), access, and governance, which will also impact park

neighbors. Inaccurate or inconsistent boundary locations or

definitions may lead to ineffective policing of boundaries

and illegal activities, leading to issues such as forced sei-

zure of land or expulsion from settled lands, straining park-

neighbor relations (Ryan and Hartter 2012). If inconsistent

or incorrect spatially explicit data are used and exchanged

between managers and organizations, encroachment sur-

veillance may be compromised (Watson et al. 2013), and

disagreement over management decisions may arise

between institutions due to conclusions drawn from dif-

ferent data sources.

Spatial data, such as park boundaries, watershed delin-

eation, management zones, and wildlife ranges are often

created by digitizing aerial photos, satellite imagery, or

topographic maps, and rendered in a GIS. This process

results in efficiency gains and cost savings that are

important since conservation organizations that are small

and locally operated do not always have the means to

secure complete, consistent spatial data for their manage-

ment areas (Freeman et al. 2011). However, creating spatial

data does have its drawbacks. Error is introduced along the

way during digitization and data rendering, beginning with

satellite imagery and aerial photo acquisition, and pro-

cessing. Errors not only propagate, but also can amplify

throughout this process (Congalton and Green 2009). In

addition, human interpretation in analog remote sensing

(i.e., digitizing from aerial photographs) is a large source of

this error, resulting in consistency issues of final data

products, because two different people would not create

identical data in such a subjective process (Hunsaker et al.

2001). While at times ground referencing of these data

does occur, management decisions are often made in places

distant from the location where they will be put into effect.

GIS-derived maps are often easy representations for these

choices, but users do not always realize the inaccuracies

and political and social influences associated with them

(Kolte et al. 2009).

Conservation and resource management operate at mul-

tiple scales due to the wide range of species and ecological

processes (Lindenmayer et al. 2008). Analyses utilizing GIS

simplify four-dimensional relationships and processes in

two-dimensional space. Depending on the field-of-view or

scale at which the user is operating (e.g., park scale, park

sector or sub-sector, or plant community), the spatial mis-

match created by boundary delineation may have more or

less inherent error. Specific to boundary creation, we see that

when data are created from cadastral and topographic maps

(paper maps that were originally created using higher accu-

racy, but more costly survey methods), the original lines are

often more coarse. The degree to which this is problematic

depends on the scale at which the data are being viewed.

When the user is viewing a park boundary zoomed out, the

boundary appears smooth. However, when zoomed into a

certain section of the boundary, it becomes apparent that the

boundary is a series of jagged lines and is not an accurate

representation of what is on the ground. Due to the increasing

amount of relative error of lines that are more curved com-

pared to straight lines, a curved line’s depiction is dependent

on the amount of vertices used (Burrough and McDonnell

1998). Each of these vertices represents the connecting point

between a new, straight line in a GIS.

In this paper, we illustrate potential sources of error and

uncertainty in spatial data quantitatively by comparing spa-

tial data between three organizations involved in Ugandan

park management—either directly, or through scientific

research leading to management decisions. To demonstrate

the inconsistencies using spatial data, we examine the mis-

match between park boundaries—both in area and loca-

tion—and between institutions. We compared park data

from the International Union for Conservation of Nature

(IUCN), World Resources Institute (WRI), and Uganda

Wildlife Authority (UWA) for seven national parks (Fig. 1)

in the Ugandan Albertine Rift (official park area as reported

by UWA (http://www.ugandawildlife.org/) noted in paren-

theses): Bwindi Impenetrable National Park (321 km2), Ki-

bale National Park (795 km2), Mgahinga Gorilla National

Park (34 km2), Murchison Falls National Park (3,840 km2),

Queen Elizabeth National Park (1,978 km2), Rwenzori

Mountains National Park (996 km2), and Semuliki National

Park (220 km2) (hereafter, the parks will be referred to in the

abbreviated form of Bwindi, Kibale, Mgahinga, Murchison

Falls, Queen Elizabeth, Rwenzori, and Semuliki). Then, we

demonstrate the impact these discrepancies can have on a

landcover analysis using satellite-derived land cover data.

We hope to call attention to the potential for this discrepancy

to arise, and suggest that it can be added to assessment

checklists when developing management plans with spatial

data dependencies.
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Methods

The Albertine Rift region in East Africa is one of the

world’s hotspots for biodiversity (Plumptre 2002; Plumptre

et al. 2003, 2007; Cordeiro et al. 2007). High rates of

habitat loss and conversion, largely due to intensive

smallholder agriculture and land and resource pressures,

make this one of the most threatened and high priority

areas for conservation (Ryan and Hartter 2012). We focus

on a subset of seven Albertine Rift parks within Uganda,

where we have access to sufficient data to address our

study (Fig. 1). Park boundary polygons were obtained as

shapefiles from the WRI (dataset last updated in 2007, with

no metadata regarding scale), IUCN (dataset created in

1999, with no metadata regarding scale) websites and from

UWA officials (no date specified, with a scale of 1:50,000).

Boundary polygons were projected into each park’s

respective UTM zone within the WGS 1984 datum. We

then merged all three boundary layers for each park toge-

ther into one boundary file using ArcGIS 10.1 to find the

areas of overlap and discrepancy between all three datasets.

To provide an example of the type and magnitude of

errors that these boundary discrepancies may give rise to,

we quantified the area assigned to different landcover

classes within each boundary set. Using an independent,

pixel-based classification dataset, we can truly illustrate

these differences. We used the University of Maryland

classification moderate resolution imaging spectroradiom-

eter (MODIS) MOD12Q1 data layer to establish our dif-

ferent landcover classes. The MODIS MOD12Q1 contains

500 m gridded world landcover data. To cover the study

area, four images from January 1, 2012 were mosaicked

Fig. 1 Seven national parks

located in the Albertine Rift

(dashed-line). 1 Murchison

Falls National Park, 2 Semuliki

National Park, 3 Rwenzori

Mountains National Park, 4

Kibale National Park, 5 Queen

Elizabeth National Park, 6

Bwindi Impenetrable National

Park, and 7 Mgahinga Gorilla

National Park
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together in Erdas Imagine 2013. We recoded the classifi-

cation by combining the various pre-defined classes of

forest (Evergreen Needleleaf, Evergreen Broadleaf,

Deciduous Needleleaf, Deciduous Broadleaf, and Mixed),

shrubland (closed and open), and savanna (woody and

regular) into more generalized classes. This resulted in

landcover totals within each park boundary for five mutu-

ally exclusive classes: (1) forest, (2) shrubland, (3)

savanna, (4) grassland, and (5) cropland. Since we are only

comparing spatial differences in the landcover of one

image and not temporal changes, MODIS landcover pro-

ducts are appropriate for our analysis, and allow us to

extend the landcover test to all seven parks. We recognize

possible errors associated with the accuracy of this product,

but they will not affect our results since the purpose of our

analysis is to demonstrate a real-world implication of data

discrepancies.

Results

We found that the boundary data vary in three ways: total

area, overlaps and gaps between dataset boundaries, and

what appear to be systematic offsets (Table 1). The spatial

discrepancy results in a wide range of spatial variance.

While Kibale had discrepancy in area representation of

only 0.4 % (3.0 km2) between the three data sources,

Rwenzori and Semuliki varied by 9.9 % (98.9 km2) and

9.7 % (23.6 km2), respectively (Table 1). Murchison Falls

and Queen Elizabeth showed low variation in area—less

than 2 %. Bwindi and Mgahinga varied by 5.3 %

(18.1 km2) and 6.4 % (2.7 km2), respectively. In addition,

many parks showed noticeable spatial variation in the

location of park boundaries, in addition to quantitative area

variation (Table 2). Figure 2 provides an example of the

differences in spatial location and overlap in the different

data layers, using Rwenzori as an example. Locations

where the boundaries either had no overlap with other

polygons, or overlapped with a second or all three

boundaries are illustrated in grayscale shading in Fig. 2.

The black polygon in the center of the image shows the

locations where all three polygons overlap, the gray poly-

gon where the WRI and IUCN boundaries overlap, and the

polygon with the black dots shows the location of only the

UWA boundary. We note that this is not a systematic shift

throughout the whole park (notice the western boundary

lines up relatively well between all layers), but rather

geometric and locational differences of many of the

boundaries. This means that just 816.7 km2 (Table 2) of

the total area (996 km2) of Rwenzori is located in the same

location within the coordinate system. Since the total area

of the park ranged from 897.5 to 996.4 km2, with the dif-

ferent boundary data sets, the total overlapping area

accounts for 81.9 to 91 % percent of the overall area of the

park, depending on which organization’s data layer is used.

The same issue can be seen with Bwindi, where there is a

251.6 km2 overlap between all data sources, meaning 74.5

to 78.7 % of the total area is in common. Kibale and

Murchison Falls showed the least variation in overlapping

area, all with greater than 95 % of area in common.

The discrepancies quantified in the MODIS landcover

data ranged from minor differences to large differences of

total landcover within each class (e.g., crops or forest)

within each respective park. Not surprisingly, the

Table 1 Total area (km2) of each park [Bwindi Impenetrable National

Park (BINP), Kibale National Park (KNP), Murchison Falls National

Park (MFNP), Mgahinga Gorilla National Park (MGNP), Queen

Elizabeth National Park (QENP), Rwenzori Mountains National Park

(RMNP), and Semuliki National Park (SNP)] for each data source

[International Union for Conservation of Nature (IUCN), World

Resource Institute (WRI), and Uganda Wildlife Authority (UWA)],

difference between maximum and minimum park area (km2), and

percent difference in area between minimum and maximum park area

National

Park

IUCN WRI UWA Difference

between max

and min park

area (km2)

%

Difference

between

min and

max park

area

BINP 327.7 319.9 337.9 18.1 5.3

KNP 789.7 792.4 792.7 3.0 0.4

MGNP 38.6 40.7 41.2 2.7 6.4

MFNP 3,876.4 3,867.4 3,820.6 55.8 1.4

QENP 2,102.8 2,103.9 2,065.8 38.1 1.8

RMNP 996.4 995.2 897.5 98.9 9.9

SNP 221.1 220.5 244.1 23.6 9.7

Table 2 Total area (km2) in common between all three data sets

[International Union for Conservation of Nature (IUCN), World

Resource Institute (WRI), and Uganda Wildlife Authority (UWA)]

for each park [Bwindi Impenetrable National Park (BINP), Kibale

National Park (KNP), Murchison Falls National Park (MFNP),

Mgahinga Gorilla National Park (MGNP), Queen Elizabeth National

Park (QENP), Rwenzori Mountains National Park (RMNP), and

Semuliki National Park (SNP)], and percent of overlapping area based

on the separate area calculations

National

Park

Overlapping area

between all data

sources (km2)

% of

IUCN

% of

WRI

% of

UWA

BINP 251.6 76.8 78.7 74.5

KNP 769.9 97.5 97.2 97.1

MGNP 35.9 93.0 88.2 87.0

MFNP 3,694.1 95.3 95.5 96.7

QENP 1,906.3 90.7 90.6 92.3

RMNP 816.7 82.0 82.1 91.0

SNP 205.4 92.9 93.1 84.1
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differences varied with the total amount of overlap between

the three data sources (Fig. 3; Table 3). For instance,

Bwindi had large differences in forest and cropland class

area, with differences between 4,650 and 2,475 km2,

respectively. That equates to a 13.1 and 65.6 % difference

in forest and crop cover between the largest and smallest

estimates. Similar differences can be viewed with

Rwenzori, with forest and crop area varying 8.0 and

46.7 % between the largest and smallest landcover esti-

mates, respectively. Kibale, a park that had minimal vari-

ation spatially between all three park sources, had

variations of only 0.3 and 8.4 %, respectively.

Discussion

There are clear efficiency gains to working in a digital GIS

compared to cumbersome paper copies of maps and costly

and time intensive field surveys (O’Looney 1997; Ober-

meyer 2005). However, there are spatial discrepancies

(both in extent and location) in data layers, which may in

turn alter or lead to misinformed management decisions.

These discrepancies are potentially detrimental to conser-

vation policy and management, such as boundary

establishment and maintenance, resource extraction, wild-

life migration, delineation of management zones, sensitive

species monitoring, priority conservation areas, extractive

reserve boundaries, and local governance of non-park areas

and spaces—the so-called zones of interaction (DeFries

et al. 2010).

GIS can be an effective tool for identifying and

demarcating the location, quantity, and distribution of

resources within a park (Jachmann 2008), but its effec-

tiveness depends on the accuracy of the spatial data. The

results of our landcover discrepancy analysis illustrate this

point. It is not unreasonable to assume that a scientist or

manager could reach different conclusions from landcover

studies depending on which boundary layer they use for

Bwindi or Rwenzori. For instance, the amount of total

forest area circumscribed by the different boundary sources

varies considerably, and one could conclude a large dif-

ference in an inventory of total forest. One could also reach

different conclusions as to the extent of crop encroachment

into the park based on the widely different area and

boundary location estimates. Importantly though, this dis-

crepancy varies across different parks, and the implications

may also be different. Smaller parks within our analysis

appeared to be more affected than their larger counterparts.

Fig. 2 Spatial inconsistencies of Rwenzori Mountains National Park based on where each data source [International Union for Conservation of

Nature (IUCN), World Resource Institute (WRI), and Uganda Wildlife Authority (UWA)] is located

600 Environmental Management (2014) 54:596–605
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This is largely due to the potential for a greater proportion

of a small park to be affected with even a small discrep-

ancy between layers.

Spatial data have been used to assist in anti-poaching

efforts to map high-risk poaching locations through spatial

modeling (Young et al. 2011; Haines et al. 2012). Hamisi

(2008) used inputs such as terrain slope, location of human

population, and land cover and road types to identify

potential high-risk areas for zebra poaching in Tarangire

National Park in Tanzania. If spatially inconsistent data are

overlaid and used to locate high-risk areas of poaching,

areas that need monitoring may be missed (errors of

Table 3 Total area (km2) of landcover classes between all three data

sets [International Union for Conservation of Nature (IUCN), World

Resource Institute (WRI), and Uganda Wildlife Authority (UWA)]

for each park [Bwindi Impenetrable National Park (BINP), Kibale

National Park (KNP), Murchison Falls National Park (MFNP),

Mgahinga Gorilla National Park (MGNP), Queen Elizabeth National

Park (QENP), Rwenzori Mountains National Park (RMNP), and

Semuliki National Park (SNP)]

National Park BINP KNP MFNP MGNP

Organization IUCN UWA WRI IUCN UWA WRI IUCN UWA WRI IUCN UWA WRI

Forest 314.0 356.3 309.8 767.5 770.0 767.5 52.3 55.0 49.8 14.0 15.5 14.3

Shrubland 0.0 0.0 0.0 0.3 0.3 0.3 0.5 0.5 0.5 0.0 0.0 0.0

Savanna 23.3 16.5 20.0 111.8 115.0 113.0 3,687.0 3,652.3 3,679.8 19.3 21.8 19.8

Grassland 9.0 6.0 7.8 2.3 2.3 2.3 40.8 38.5 40.8 1.5 1.5 1.5

Cropland 36.5 13.0 37.8 32.8 35.8 34.8 737.0 698.8 728.3 12.0 10.3 12.0

National Park QENP RMNP SNP

Organization IUCN UWA WRI IUCN UWA WRI IUCN UWA WRI

Forest 932.8 952.8 956.5 945.3 869.3 940.5 225.3 247.5 223.3

Shrubland 5.0 5.3 5.3 2.8 3.3 3.0 0.0 0.0 0.0

Savanna 623.5 613.0 619.5 112.3 92.0 113.0 27.0 28.8 28.3

Grassland 15.3 15.5 14.5 70.8 62.8 69.3 0.0 0.0 0.0

Cropland 751.5 724.8 734.8 26.3 14.5 26.8 5.8 7.0 5.5

Fig. 3 Difference in total area (km2) of each landcover class (forest,

shrubland, savanna, grassland, and cropland) between all three data

sets [International Union for Conservation of Nature (IUCN), World

Resource Institute (WRI), and Uganda Wildlife Authority (UWA)]

for each park [Bwindi Impenetrable National Park (BINP), Kibale

National Park (KNP), Murchison Falls National Park (MFNP),

Mgahinga Gorilla National Park (MGNP), Queen Elizabeth National

Park (QENP), Rwenzori Mountains National Park (RMNP), and

Semuliki National Park (SNP)]

Environmental Management (2014) 54:596–605 601
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omission) or resources may be deployed in low-risk areas

(errors of commission). The estimated costs of preventing

poaching in Africa range from $200 to $500 per hectare

(Richard and Erwin 2006). Based on those estimations,

possible misappropriated anti-poaching measures could

cost $60,000–150,000 and $472,000–1,180,000 for Kibale

and Semuliki, based on the spatial discrepancies of the

data. Therefore, efficient, reliable, and relatively accurate

spatial data are important for allocating these resources to

avoid this tool from being more harmful than helpful.

There is a sharp contrast in landcover at the boundary of

forest parks and the surrounding domesticated landscape in

Uganda. The less fragmented park land is surrounded by

increasingly fragmented landscapes due to intensive agri-

cultural land and population growth (Hartter and South-

worth 2009; Southworth et al. 2010; Hartter et al. 2011;

Gibbes et al. 2013), emphasizing the need for accurate park

boundary data when assessing this type of changing land-

scape. Park boundary data are often used to define the area

of interest for studies of landscape connectivity within

parks, and to create buffered regions outside of the parks.

The estimated trajectories of fragmentation and restoration

within and around a park will be affected by the area of

land in the actual park versus the amount of non-protected

land within the boundary. Peripheral land might skew

fragmentation metrics to show more fragmentation than is

actually occurring within park borders. This could lead to

false conclusions about the effectiveness of a certain park

to reconnect previously fragmented ecosystems. This is

illustrated by the wide discrepancies of cropland included

in the landcover analysis of this paper, and examples of

dramatic spatial discrepancies like Fig. 2 of Rwenzori.

Accurate data layers are also imperative for studying

animal movement and distribution patterns. Galanti et al.

(2006) used overlay analysis, in conjunction with animal

tracking GPS, to research movement patterns of elephants

in Tanzania during both the wet and dry seasons. Over-

laying the elephant GPS points with various other data

allowed for the researchers to view how often the animals

stay within the parks. Goldsmith (2000) provided another

example of a similar situation in which mountain gorillas

(Gorilla beringei beringei) of Bwindi often sleep outside of

the boundary of the park. These studies highlight the

importance of consistent and accurate park boundary lay-

ers. The boundary that is chosen in such an analysis is

paramount to the success of the study in delineating their

ranging behavior and movements. If the GPS information

shows that a species largely stays within the park, but the

boundary layer is incorrect and the species actually spends

the majority of its time on the outskirts of the boundary,

there is cause for concern. The extension of park bound-

aries to areas where the species under consideration is

located might never be brought into practice due to the

invalid conclusions resulting from the research. Figure 2

highlights a dramatic difference in the location of the

boundary of Rwenzori. With portions of the northern tip of

the park offset greater than 2 km from each other, there is a

large area of discrepancy where uncertainty of species

location within park boundaries could occur.

Possible data inaccuracies could also be introduced

through previous manipulations of the data. This can occur

intentionally, such as when scientists introduce error into

data showing, for example, the location of rare species,

habitat, and resources for their security (Jacobson and Duff

1998; Mascia et al. 2003; Hartter et al. 2013), or it can occur

unintentionally. For instance, GIS users do not always

download data directly from the producers. Many times, the

data are passed along and handed down from colleagues, and

it is possible for metadata to get lost in translation, and

insufficiently updated, leaving the current user with inaccu-

rate information. An example of the ill-effects of incomplete

or missing metadata is when data layers are brought into a

GIS with no projection defined. When a user has no metadata

that provides projection information, the user may specify ad

hoc a coordinate system. This lack of metadata (or inaccurate

metadata) could result in an inaccurate spatial representation

within the selected projection. Even if the data were origi-

nally in the correct projection to begin with, the process of

reprojecting data from one projection (e.g., WGS 84, UTM)

to a different projection (e.g., Africa Albers Equal Area

Conic), then back to the first can render the data different

from its original, pre-projected state (Stine and Hunsaker

2001). These data manipulations and incomplete metadata

can hinder the results sought after in a project, which can

inevitably increase discrepancies between data layers.

Another scenario in which incomplete metadata can

affect the final analysis is when data created at an inap-

propriate scale for the study are used. If small-scale data

(increasingly generalized) are used for studies requiring

large-scale data (increasingly detailed), inaccurate

assumptions could result, and error could be propagated

through the final product. Information regarding appropri-

ate scale of the data should be easily located within the

metadata. Thus, it is important to note that only one of the

metadata associated with the files used in this analysis has a

section that explicitly states the scale of the data. There-

fore, it is largely up to the data user’s subjective discretion

of what they assume is a usable and appropriate scale for

the data. According to the data standards of the IUCN

Protected Planet project (www.protectedplanet.net), the

inclusion of information on data scale and lineage is

optional information in the file metadata for files in their

system (UNEP-WCMC 2012). Adding this information to

metadata would be a helpful supplement to the current

metadata, and would increase the likelihood that the data

are used appropriately.
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An additional point is worth making. Administrative

boundaries normally depend on bureaucratic decisions due

to their invisible nature, and often can only be seen by

interacting with local government administrations (Cam-

pari 1996). As such, boundaries can often take on an

‘‘unofficial’’ nature. For instance, although there may be an

official, surveyed boundary between two neighboring plots

of land, an unofficial boundary often takes precedent and is

the boundary practiced between neighbors (Harvey 2011).

One example of this unofficial boundary can be the line in

which each neighbor stops taking care of their yard. The

line to which the grass on one property is cut can become

the boundary that is used to demarcate the plots, even if it

does not match the official, surveyed boundary, and can be

fluid and shift over time. In the event that aerial imagery is

used to define a boundary based on noticeable natural

features in the imagery, this unofficial border could be used

to delineate the GIS boundary, and data users can get a

different idea of the boundary compared to what another

person sees using separate data. This may lead to boundary

disputes and insecure land tenure, as it has in Tanzania

(Verplanke and McCall 2003). Additionally, park desig-

nations can change through time, and boundaries can shift

as a result. This was the case when the former Kibale

Forest Reserve and Kibale Game Corridor were combined

to form Kibale National Park in 1993 (Ryan and Hartter

2012). The boundaries of Kibale shifted yet again in 1998

after a formal survey showed that the original location of

the boundary was incorrect, and people who were residing

within the incorrect boundary were evicted and forced to

relocate. Often, boundaries have multiple pressures acting

on them, and each time park designation is changed or

redefined, there is an opportunity for data to become out of

date or obsolete. This becomes a noticeable issue when

metadata records are not updated sufficiently, and an

organization or user cannot adequately distinguish between

an outdated and current representation of the real-world.

There are a few steps that can be taken to identify

potential errors and uncertainty (as well as bad sources of

data) to reduce their negative impacts. Although obvious,

the first step for anyone downloading or using spatial data

should be to locate and view a data layers metadata with a

critical eye. The increased availability of spatial data and

free GIS software has led to an increased risk of data

misuse, as many people who are untrained in geospatial

data have greater access to its services (Devillers et al.

2002). Metadata are going to become increasingly impor-

tant as easy access increases, since non-experts can also

create data and make them available for others to use

(Hartter et al. 2013). Metadata are often times limited,

incomplete, and too complex for an inexperienced user

(Beard and Buttenfield 1999; Devillers et al. 2007).

Therefore, another step to reducing misuse of data would

be to increase training in geospatial technologies to

develop a more knowledgeable user base that can ade-

quately navigate and use the enormous amount of data

available on the internet (Devillers et al. 2007). Since

increased education can be difficult to implement and

monitor, another solution suggested by Devillers et al.

(2007), is to employ a third-party mediator to act as a

translator between data users and data producers. This

would aid in the product-users having a knowledgeable

source to decipher complicated metadata, and help data

producers ensure their message is communicated

effectively.

Conclusion

While policy and management decisions are made using a

variety of methods and data sources; GIS, both for analyses

and data acquisition, plays an ever-increasing role. There-

fore, the limitations and inaccuracies that may exist within

subsequent analyses will be amplified. This demonstration

of the inter-institutional data variations in East African

park borders highlights where some of these errors can

creep in, and illustrates how error can have a greater

influence on smaller parks. We thus call for both caution

and awareness in using geospatial data: caution in accept-

ing a ‘‘map’’ as truth, and awareness of where the inherent

and often unavoidable sources of error might affect utility

and interpretation. In assessing park management plans at

an institutional level, we suggest explicitly including a

review of this potential for data discrepancy to introduce

error or bias into decisions based on spatial data. We have

highlighted a primary issue of boundary definitions, but

this potential pitfall must be emphasized in all uses of

spatial data.
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